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I. Introduction. A considerable number of publications have recently apepared in which 
the ideas of gauge field theories have been used to describe the dynamics of defects in con- 
densed media (see, for example, [1-5]). Unlike the theory of elasticity, in theories which 
describe the mechanics of the deformation of a solid with defects, in addition to the so- 
called external degrees of freedom (the role of which may be played by the total displace- 
ments of points of the body Ur(r)), a certain number of internal degrees of freedom (depend- 
ing on the model) are also introduced. In the simplest case, by considering only transla- 
tional defects, one can choose as the internal degrees of freedom (at each point) nine com- 
ponents of plastic distortion ~ij" Using chosen variables, a gauge-invariant Lagrangian [6] 
is described, the variation of which leads to dynamic equations of the model of the medium 
considered. It is important to note that, since the equations of motion of the medium are 
obtained from the principle of least action with a Lagrangian which does not depend explicitly 
on time and is invariant under global rotations and displacements of the system of coordi- 
nates, the law of conservation of mechanical energy, momentum and angular momentum are auto- 
matically satisfied, and the system is therefore strictly nondissipative. The absence of 
dissipation is one of the main reasons why it is difficult to give a physical interpretation 
of the theory as a model of an elastoplastic medium and to compare it with experiment. 

As was shown in [i], in the framework of this theory one can nevertheless speak of dissi- 
pation if one means by it the process by which energy is transferred from some degrees of 
freedom, which we will consider to be external ones, to other degrees of freedom of this 
medium, which we will regard as internal. This energy exchange between degrees of freedom 
must occur in any model. In an extended system with energy exchange at the boundary, this 
process will be irreversible, and will thereby have all the features of energy dissipation. 
It is clear, however, that this approach to dissipation does not exhaust all possible 
channels of energy irreversibility. The problem is whether one can describe the main 
channels of dissipation which occur in actual media, or whether they remain outside the 
framework of this model. In our opinion, the main dissipation channel is neglected in this 
model and requires a special investigation. It is obvious that the dissipation that occurs 
in elastic motions of the medium is considerably less than that which occurs in plastic de- 
formation. The latter is related to acoustic radiation when the defects surmount the 
Peierls barriers and other processes which only occur in a discrete medium, which any real 
medium is. Such processes are generally not considered in gauge theories of mechanics, 
i.e., the main dissipation channel is ignored. 

In this paper we consider dissipation connected with plastic degrees of freedom. Dissi- 
pation is introduced explicitly by appropriately including certain dissipative terms in the 
equations of motion. The dissipation is assumed to be fairly small. It can therefore be 
described by a so-called dissipative function [7]. The system of equations of motion of this 
model are linear and enable one to determine completely the dispersion relations for normal 
oscillations, which, when dissipation is introduced, turn out to be complex. A similar 
procedure has already been used in [8, 9] for media without dissipation. 

2. The Lagrangian and the Dissipative Function. We will start from the gauge Lagrangian 
in the simplest "minimum coupling" model [6], which has already been used in [8, 9]: 

Let-Pz = o d V  P ot at 9 \ ~ \-jff~ , 9 \-j~x - -  ~ • (2 .1)  
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Here ui(x) is the displacement vector of a point with initial coordinate x, p is the density 
of the medium, l, ~ are the Lame coefficients, dV is the volume differential, ~ij is the 
plastic-distortion tensor, B and C are new material components, and =km = ekij88jm/Sxi is 

the dislocation-density tensor. In (2.1) and henceforth summation is understood to be 
carried out over repeated indices. It is also assumed that the medium is incompressible 
for plastic deformation 

Sp~= ~h=0, (2.2) 

which is a good approximation for actual solids. 

Energy dissipation can be taken into account by adding a friction force to the equations 
of motion obtained using Lagrangian (2.1). As we know [7], for a small value of the dissi- 
pation the friction forces are linear functions of the generalized velocities (in this case 
8~ij/St) , and can be determined using the dissipative function R. The latter must be a 
scalar quadratic function of the tensor 8~i~/8t. For a qualitative analysis we will confine 
ourselves to the simplest form of this functxon, namely, 

(2.3) 
0t 0t " 

3. The E q u a t i o n s  o f  Mot ion  and t h e  D i s p e r s i o n  R e l a t i o n s .  The e q u a t i o n s  o f  mo t ion  f o r  
any g e n e r a l i z e d  c o o r d i n a t e  a r e  t h e  E u l e r - L a g r a n g e e q u a t i o n s ,  on t h e  r i g h t - h a n d  s i d e  o f  which  
v i s c o u s  f o r c e s  a r e  added 

d OL OL aR 

B e a r i n g  ( 2 . 1 ) - ( 2 . 3 )  in  mind,  we o b t a i n  t h e  dynamic  e q u a t i o n s  

P at2 o~.~o~q P ~ ~xqo~q "+ ~ / +  P \ ~zq + = O, (3.  i) 

(y is an undetermined Langange multiplier). We will seek solutions in the form 

u~, ~p7 ~ exp(-i~t + tkr). 

Substituting these into the system of equations (3.1) and solving the characteristic equation 
obtained we obtain eleven characteristic frequencies for each value of k. Two forms of 
representing the dispersion relations are possible. If we choose k to be real, the frequen- 
cies turn out to be complex, and the imaginary part of the frequency gives a quantity which 
is the inverse of the attenuation time of the corresponding normal mode. If the real 
quantities m are specified, the wave vectors turn out to be complex, and the imaginary part 
of the wave vector will determine the inverse depth of penetration of the excitation of this 
frequency into the medium. Bearing in mind subsequent applications to the propagation of 
waves in the medium, we will choose the second representation. The solutions of the 
characteristic equation of system (3.1) for k can be obtained analytically. Even in the 
case of zero dissipation they are given by lengthy expressions, which we will not reproduce 
here. The results of numerical calculations, which demonstrate the changes in the spectrum 
of normal oscillations, taking dissipation into account, are shown in Figs. 1-3. 

4. The Configuration of the Normal Modes in the Case of Zero Dissipation. In Fig. I 
we show dispersion curves for the case of zero dissipation (N = 0). The constants of the 
material are chosen to be the same as in [8] (l = 2, ~ = i, B = 2/9, C = 1/72, p = i), in 
which the possibility of determining them experimentally is discussed. It can be seen that 
of the eleven branches of normal oscillations, two are zero, four correspond to acoustic 
oscillations (~ + 0 when k ~ 0), and five are optical oscillations (~ § m0 # 0 when k + 0). The 
nine nonzero modes define different forms of excitations which propagate in the crystal, 
while the two zero modes define the remaining deformations. 

An analysis of the configurations of the normal oscillations shows that in the long-wave 
limit (k + O) the optical modes ks, ~, ks,7 and k~0 are oscillations of the internal degrees 
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of freedom with a small addition of external modes (u % kS). The mode k s corresponds to 
oscillations of the internal degrees of freedom (u i = 0, $ij # 0) for any k. The oscilla- 

tions of the external degrees of freedom as k ~ 0 are modes k~,8 and klz. However, for 

these branches the addition of plastic modes is not small (the elastic and plastic distor- 
tions are of the same order of magnitude). Note that the law of dispersion of the mode klz 
as k + 0 has the form 

w h e r e  K = X + 2 / 3  ~ i s  t h e  b u l k  m o d u l u s  o f  t h e  e l a s t i c  c o n t i n u t u n .  T h e r e  a r e  no  t r a n s v e r s e  
a c o u s t i c  o s c i l l a t i o n s  a s  ~ ~ 0 .  H e n c e ,  t h e  s p e c t r u m  o f  t h e  medium c o n s i d e r e d  i n  t h e  l o n g -  
wave  l i m i t  e x h i b i t s  t h e  f e a t u r e s  o f  t h e  s p e c t r u m  o f  a n  o r d i n a r y  l i q u i d .  I n  t h e  l o n g - w a v e  
limit the spectrum of the medium in question shows a similarity with the spectr~ of a 
solid. Thus, as ~ + ~ the modes ks, 7 and kz0 describe purely elastic oscillations ($ ~ u/k), 
which also manifests itself in the dispersion laws: as m + ~ they are linear and corres- 
pond to the propagation of waves with the velocities of longitudinal sound Cii =r l)Tpp 

and transverse sound C i = ~ in an elastic medium. The remaining modes, in the limit of 

large k, describe oscillations of the internal degrees of freedom. The analogy with the 
spectrum of a liquid as m + 0, and of a solid as ~ + ~ becomes particularly close when 
energy dissipation is taken into account. 

5. Discussion of the Results. The value of the dissipation in the medium will depend 
on the ratio of the elastic and viscous forces in the equations of motion (3.1). Comparing 
the dynamic terms DSpq with the viscous term q3~pq/St and assuming that ~pq/St ~ ~0~pq, we 

find the dissipative force is governed by the dimensionless parameter 
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Figure 2 shows the form of the dispersion curves when K = 0.05. The remaining constants 
are the same as in Fig. i. It is noteworthy that the inclusion of dissipation has the 
least effect on the short-wave part of the spectrum. In the low-frequency region a quali- 
tative readjustment of the spectrum occurs even for very low dissipation. Since the low- 
frequency region is subjected to the most intense rearrangement, in Fig. 3 we show curves 
of Im&(~) separately for ~ = 0.02 in the region m << m 0. When dissipanlon is included 
the former acoustic branches 6, 8, 9 and ii become complex for any m. The attenuation 
of k6, s and k 9 is independent of the frequency and is determined by the coefficient of vis- 
cosity. The branch kll, which up to a certain frequency (of the order of ~0 = (2D/B) I12) is 
a weakly attenuating branch (Imkll % m2), is of particular interest. Then a sharp bend is 
observed on the Imkli(m) curve, after which the curve approaches a certain constant limit, 
which is nonzero, and hence the perturbations of this branch will attenuate at a certain 
depth. 

We will now consider the optical branches ka,4, ks,v and kl0. When there is no dissi- 
pation the wave vectors of these branches are purely real when ~ > m0 and purely imaginary 
when m < m 0 (Fig. la, b). When dissipation is included, in the region of low values of m 
the optical branches, as before, are decaying branches, while in the high-frequency limit 
three branches (ks, 7 and kl0), corresponding to longitudinal sound and two polarizations of 
transverse sound, describe the propagation of perturbations without attenuation. Hence, the 
dispersion relations shown in Figs. i and 2 enable one to follow in detail the change in 
the response of the medium to a periodic external force from liquid-like in the low- 
frequency limit to solid-like in the high-frequency limit. 

The inclusion of dissipative terms in the equation of motion in the model of the medium 
considered leads to a considerable change in the spectrum of normal oscillations. The 
frequency of the optical oscillations m0 remains the characteristic frequency of the medium. 
When the frequency of the inducing forces in the medium in question changes for m << m0, 
only one weakly decaying branch will be excited, corresponding to compression waves in a 
liquid. In the opposite limit (m >> m0), three branches, the configuration of which corres- 
ponds to longitudinal and transverse sound in an elastic medium, are weakly decaying. Hence, 
at frequencies below a certain characteristic frequency m0 the medium behaves as a liquid, 
and at higher frequencies it behaves as a solid. 
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NONLINEAR BENDING OF TOROIDAL SHELLS OF ARBITRARY 

TRANSVERSE CROSS SECTION LOADED WITH INTERNAL 

PRESSURE 

V. V. Kuznetsov and S. V. Levyakov UDC 539.3 

In this paper we derive complete geometrically nonlinear relations for the problem of 
the bending of a toroidal shell of arbitrary transverse cross section. An accurate expres- 
sion is obtained for the potential of the internal-pressure forces, which holds for any dis- 
tortions of the shape of the cross section. An algorithm and a numerical solution of the 
problems of the deformations of cylindrical and toroidal shells for large elastic displace- 
ments are considered. The results obtained are compared with existing analytic solutions 
and experimental data. 

i. Introduction. Since the publication of the papers by Dubyaga [I] and Karman [2] 
there have been numerous investigations of the problem of the bending of thin-walled curvi- 
linear tubes, most of which have been carried out using the linear theory of shells. The 
case of the combined action of internal pressure and bending moments on a tube of circular 
transverse cross section is considered in [3, 4] using variational principles. Another 
approach was employed in [5], which consists of solving the differential equations of the 
bending of a toroidal shell, first loaded with internal pressure. It was established that 
the stiffness properties and the stresses in the shell depend nonlinearly on the pressure. 
Small displacements were investigated and the problem was regarded as being linear in the 
bending moments. Large displacements for pure bending of cylindrical shells were considered 
in [6], and the value of the limiting moment for which a loss of the stability for the shells 
occurs was found, and the stability of a shell on bending, taking into account changes in 
its shape in the subcritical state was investigated for the first time. The results ob- 
tained in [6] were refined in [7-9] both by retaining small terms in the initial relations, 
and by choosing different approximating functions. The effect of the internal pressure 
when cylindrical shells are bent was taken into account in [i0]. The previous results 
were generalized in [Ii] and two problems previously considered separately, were combined: 
the bending of curvilinear tubes in the linear formulation, and the deformation of cylin- 
drical tubes in the case of large elastic displacements. The nonlinear equations of the 
bending of tubes with a small initial curvature of the axial line were derived and integrated 
approximately. The problem of the bending of curvilinear tubes loaded with an internal 
pressure was also solved in [12, 13], taking the geometrical nonlinearity into account. 

It should be noted that the solutions mentioned above, particularly the nonlinear ones, 
were obtained using simplified deformation relations and retaining a small number of terms 
of the approximating series. It is therefore of interest to obtain more accurate results, 
particularly in the supercritical region. 

Certain problems of the finite bending of curvilinear tubes were investigated in [14] 
using the nonlinear theory of shells. 

2. Formulation of the Problem. We will regard the tube as a thin-walled toroidal 
shell. Suppose the tube is loaded with an internal pressure and boundary bending moments 
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